
New Programming Paradigms

• Don Batory
• Ira Baxter
• Karl Crary
• Premkumar Devanbu
• Tzilla Elrad
• Paul Hudak
• Ralph Johnson
• Gregor Kiczales
• Sriram Krishnamurthi
• James Larus
• Karl Lieberherr

• Tommy McGuire
• Michael Mislove
• Benjamin Pierce
• Joy Reed
• Spencer Rugaber
• Charles Simonyi
• Frank Sledge
• Doug Smith
• Kurt Stirewalt
• Janos Sztipanovitzs

software is inherently complex

• and we want to build more and more complex
systems

• we deal with complexity by
– abstraction and (de)composition
– aka ‘separation of concerns’

• progress in abstraction and (de)composition is basic
to our field
– we’ve made progress handling some concerns before
– but more progress is needed
– there is an opportunity to make significant progress

(a sea of) concerns

• domain knowledge, environment
knowledge…

• mobility, adaptability, testability, resilience,
security, functionality, distribution, real-time
constraints, cost constraints, time constraints,
fault-tolerance, verifiability, standards
conformance, scale

• architectures, algorithms, data structures

what good abstraction and
(de)composition means

• capture the individual concern
– in a clear and natural form (a means of

expression)
– well localized
– with a clear abstraction

• ‘interface’ to the rest of the system

• be able to understand the rest of the system
in terms of the abstraction of the concern

• be able to (automatically) compose concerns
to form the whole

opportunity

• we now have more kinds of
(de)composition mechanisms:
– hierarchical (objects, procedures…)
– crosscutting (aspects, subjects…)

• this can enable using different kinds of
abstraction and decomposition
frameworks together together in
powerful new ways

a scientifically based practice of
developing and expressing each concern
in its most appropriate form,
operating on each concern,
and combining to produce whole

vision:
multi-faceted software development

rigorous, top-down, prototype,
incremental, methodological…

DSL, GPL, type
system, UML,
linear logic...

functionality,
real-time,
domain…

compiling, RPC, refinement, weaving…

analysis,
checking…

implementation, design…

scope of vision

• something old, something new…
• we have pieces of this today

– following four slides are examples of what
we have today that fits this vision, and
suggests further research

• recent results should enable dramatic
progress on this vision in next 10 years

e.g. (1) – model-based computing

• for example
– a model captures timing constraints among

components
– checks that such constraints can be specified
– generates code

synthesize reverse engineer

e.g. (2) – UML

• class diagram
– captures structure of system

• interaction diagrams
– capture different sequences of operations

• generate code, edit code, generate
model…

synthesize reverse engineer

e.g. (3) – Bold Stroke in AOP experiment

• ordinary OOP to capture component
functionality
– how component produces output data from input

• AOP to capture event, data flow and
execution aspects
– event flow rules, data flow rules, update rules

• compiler weaves aspects with components
• formal reasoning about global state and end-

to-end properties

synthesize reverse engineer

e.g. (4) – partial spec plus checking

• ordinary code to implement system
• type system

– ensure data abstractions respected

• temporal behavior specifications
– e.g. file opened before reading, grab lock

before accessing structure

synthesize reverse engineer

